Research into developing more sustainable business models
Don't just take our word for it: we have peer reviewed work which proved our developed concepts are feasible and the aims achievable
CO2 emissions have been identified as the main driver for climate change, with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions, due to highfossil-fuel and energy consumption.
The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation, at 4.61t of CO2 emissions/t of steel produced, are calculated in detail. The BiSC includes CO2 capture, implementing renewable energy sources (solar, wind, green H2) and plantation for CO2 absorption and provision of biomass.
The 7-step-implementation-strategy starts with replacing energy sources, develops over process improvement and installation of flue gas carbon capture, and concludes with utilising biogas-derived hydrogen, as a product from anaerobic digestion of the grown agrifood in the cycle.
In the past, CO2 emissions have been seemingly underreported and underestimated in the heavy industries, and implementing the BiSC, using the provided seven-steps-strategy, will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
Copyright Laurea Tech Consulting Ltd. © All Rights Reserved